David G. Andersen

MIT Lab for Computer Science
NE43-512
200 Technology Square
Cambridge, MA 02139
(617) 452-2820
dga@lcs.mit.edu
http://www.angio.net/personal/

Education Massachusetts institute of Technology Cambridge, MA

S.M. in Computer Science, 2001

Ph.D. candidate in Computer Science. (Expected summer 2004)
Advisor: Hari Balakrishnan
Minor in Computational Biology
University of Utah
Salt Lake City, UT
Bachelor of Science in Computer Science. Cum Laude, 1998
Bachelor of Science in Biology. Cum Laude, 1998

Research Interests

Computer systems in the networked environment.

Professional Experience

Research assistant at the Laboratory for Computer Science (LCS / CSAIL). Worked in cooperation with the University of Utah on the RON+Emulab testbed. Major projects at MIT include Resilient Overlay Networks, Resilient Access Networks, Mayday, and the Congestion Manager. A summary of my research activities at MIT and elsewhere begins on page 4.

Summer 2001

1997-1999

1996-1997

1995-1997

1995-2003

1993-1995

Summer Intern
Compaq SRC
Summer internship working on the Secure Network Attached Disks project.
Research Assistant / Research Associate
University of Utah
One year as an undergraduate and one year as a staff research associate in the Flux research group at the University of Utah.

Research Assistant
Department of Biology, University of Utah
Undergraduate research assistantship in the Wayne Potts Laboratory in the Department of Biology.
Co-founder and CTO, ArosNet, Inc.
Acted in a directorial and technical capacity over technical operations: network design and topology planning, software development, consulting projects, and short-term research. During my three years with the company, ArosNet grew from its inception to become the third largest ISP in Utah.
Consultant
IJNT, Inc., Sypherance Technologies, Ascensus, others.
Provided network design, security, and intellectual property consulting services.
Systems Administrator, The Lower Lights
Implemented and managed database systems and medium-scale dialin analog modem banks.

Teaching Experience

Teaching Assistant, MIT course 6.829, Computer Networks.
Assisted with homework / quiz design and grading, some lectures, office hours. Designed and coordinated the group project for undergraduate students.

2001-2003

1997

2001-2003
UROP / Undergraduate Thesis supervisor, MIT.
Co-supervised one undergraduate thesis and two undergraduate research assistants in the Congestion Manager and RON projects.
Teaching Assistant, University of Utah course CS508, Computer Networks. Assisted with Homework / quiz design and grading, held weekly office hours.

Lecturer and organizer, MIT Winter Mountaineering class. Organized curriculum and lectures, presented some lectures.

Refereed Publications

[1] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan. Best-path vs. multi-path overlay routing. In Proc. Internet Measurement Conference, October 2003.
[2] Nick Feamster, David Andersen, Hari Balakrishnan, and M. Frans Kaashoek. Measuring the effects of Internet path faults on reactive routing. In Proc. ACM SIGMETRICS, San Diego, CA, June 2003.
[3] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin Oertli, David G. Andersen, Mike Burrows, Timothy Mann, and Chandramohan Thekkath. Block-Level Security for Network-Attached Disks. In Proc. 2nd USENIX Conference on File and Storage Technologies (FAST), March 2003.
[4] David G. Andersen. Mayday: Distributed Filtering for Internet Services. In Proc. USENIX Symposium on Internet Technologies and Systems (USITS), March 2003.
[5] David G. Andersen, Nick Feamster, Steve Bauer, and Hari Balakrishnan. Topology Inference from BGP Routing Dynamics. In Proc. Internet Measurement Workshop, Marseille, France, November 2002.
[6] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient Overlay Networks. In Proc. 18th ACM SOSP, pages 131-145, Banff, Canada, October 2001.
[7] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. The Case for Resilient Overlay Networks. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HOTOS-VIII) (Best Student Paper Award), May 2001.
[8] Alex Snoeren, David Andersen, and Hari Balakrishnan. Fine-Grained Failover Using Connection Migration. In Proc. USENIX Symposium on Internet Technologies and Systems (USITS), September 2001.
[9] David Andersen, Deepak Bansal, Dorothy Curtis, Srinivasan Seshan, and Hari Balakrishnan. System Support for Bandwidth Management and Content Adaptation in Internet Applications. In Proc. of the Fourth Symposium on Operating Systems Design and Implementation, October 2000.
[10] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lepreau. The Flask Security Architecture: System Support for Diverse Security Policies. In Proc. of the Eighth USENIX Security Symposium, August 1999.

Other Articles

[11] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Experience with an Evolving Overlay Network Testbed. Computer Communication Review, 33(3):13-19, July 2003.

Pending and Submitted Publications

[12] David G. Andersen, Hari Balakrishnan, and Frans Kaashoek. Grassroots Reliability with Resilient Access Networks. To be submitted, February, 2004.

Patents "Method and system for securing block-based storage with capability data." Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Oerwin Oertli, Dave Andersen, Mike Burrows, Tim Mann, Chandu Thekkath. Pending, filed in May 2003.

Selected Honors and Awards

2002-2004 Microsoft Research Graduate Fellowship
2001 Best Student Paper, 8th IEEE Workshop on Hot Topics in Operating Systems
2001 MIT Joseph Levin award for best MasterWorks oral presentation
1999 MIT Vinton Hayes Fellowship (graduate)
1998 University of Utah Graduating Student Leadership Award
1993 Member, Phi Kappa Phi and Golden Key academic honor societies
1993-1997 University of Utah Honors at Entrance Scholarship
1993
National Merit Scholar
Service and Other Activities
Reviewer for OSDI, SOSP, SIGCOMM, CCR, HotOS, ToN, Infocom, HotNets.
1999-2003 Secretary, board member, and rock climbing instructor for the MIT Outing Club.
1999-2000 Secretary, Utah Regional Exchange Point
1997-1998 Chair, University of Utah Undergraduate CS Advisory Committe
1995-1996 EMT Volunteer, University of Utah Medical Center emergency room.

Research - Network Resilience and Performance

My dissertation research investigates host-based techniques that improve the end-to-end fault resilience of communication on the Internet. Wide-area reachability suffers two weaknesses. First, inter-provider routing with BGP can be fragile and suffers from a longer time-to-repair than does intra-provider routing. Second, clients' access links are a common single point of failure impacting end-to-end reachability. The Resilient Overlay Networks (RON) and Resilient Access Networks (RAN) projects address these two points of failure.
RON is a framework that creates dynamic overlay networks between participating hosts or applications. The overlay networks use a combination of active probing and passive measurements to find more reliable and better performing routes by sending packets through the other participating nodes in the overlay. A set of Internet-based experiments in 2001 showed that RON can avoid up to half of the failures that interrupt communication, and can offer significant latency improvements for poorly-performing paths.

RAN uses a combination of overlay techniques and multiple local Internet connections to improve clients' connectivity to Internet hosts. RAN improves the reliability of hosts' communication not only with each other, but also to external hosts, and incorporates techniques that address some of the scalability concerns of RON. The RAN system is currently implemented in a Web proxy system running and being evaluated at MIT, the University of Utah, and two private companies.

Congestion Manager
MIT
The Congestion Manager provides a unified congestion controller for ensembles of TCP and UDP flows that eliminates adverse interactions and extends the benefits of congestion control to non-TCP applications. To help evaluate the CM, I co-implemented a congestion-controlled version of vat, an internet audio tool, which used the Congestion Manager to behave in a TCP-friendly manner with low overhead. I helped design and implement the kernel to user API for the CM, and performed extensive performance measurements of the CM for both in-kernel and userspace applications.

Systems and networking researchers frequently use home-grown testbeds to evaluate prototypes and perform Internet measurements. To reduce the burden of creating these testbeds and to help provide a framework with better experimental repeatability, I played a part in the conception and design of a large-scale network testbed, Emulab, and a portion of its management databases, algorithms, and software. At MIT, I deployed and currently manage a 36 -node distributed Internet testbed which is integrated with Emulab. I have been helping to transition the lessons learned from this testbed into the emerging Planetlab testbed.

Research - Network Security

Mayday presents an incrementally deployable Denial of Service prevention service that acts primarily as an overlay service, minimizing the network changes required for its deployment. Unlike tactics such as spoofing prevention, Mayday provides immediate protection to its deployers instead of requiring upgrades on the part of third parties. Mayday generalizes earlier work on Secure Overlay Services by separating overlay routing from filtering and by providing a larger set of choices for each, allowing the implementer to choose a high-performance deployment such as proximity routing, or a slower system that can withstand more capable attackers.

As part of the evaluation of Mayday and earlier work, I developed several practical attacks, two of them novel, that are effective against filtering-based systems like Mayday and SOS.

Traditional disk architectures interpose a fileserver between clients and disks to provide access control. Network Attached Disk efforts aim to place the disks directly on the network, eliminating the
bottleneck presented by the file server. The capability-based approach we examined permits the disks to export a familiar block-based interface; compared to earlier NAD efforts, this eliminates disk layout changes and simplifies the on-disk implementation. I created a filesystem simulator for our proposed architecture and created a benchmark suite from measurements of SRC's fileserver traffic to drive the simulator.

Flask: A secure microkernel
University of Utah
Users' requirements for operating systems vary considerably, from the MLS policies favored in military applications, to RBAC-like policies more common in large enterprises, to type enforcement policies favored for providing least privilege to local processes. The Flask security architecture provides fine-grained access rights and permits for their revocation to permit a single OS implementation to support a wide range of security policies. As an undergraduate, and continuing as research staff, I implemented and benchmarked parts of the Flask architecture, improved the reliability of the underlying Fluke microkernel, and implemented several of the example applications used in its evaluation.

References

Prof. Hari Balakrishnan
MIT Laboratory for Computer Science
200 Technology Square, NE43-510
Cambridge, MA 02139
(617) 253-8713
hari@lcs.mit.edu
Prof. John Guttag
MIT Dept. Electrical Engineering \& Computer Science
38-401
77 Massachusetts Avenue
Cambridge, mA 02139
(617) 253-6022
guttag@mit.edu
Prof. Jay Lepreau
University of Utah School of Computing
50 S. Central Campus Dr. Rm 3190
Salt Lake City, UT 84112
(801) 581-4285
lepreau@cs.utah.edu

Prof. M. Frans Kaashoek
MIT Laboratory for Computer Science
200 Technology Square, NE43-522
Cambridge, mA 02139
(617) 253-7149
kaashoek@lcs.mit.edu

Prof. Larry L. Peterson
Princeton University
Department of Computer Science 35 Olden St.
Princeton, NJ 08544
(609) 258-6077
llp@cs.princeton.edu

